Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 351: 141214, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38246504

RESUMO

Antibiotics, natural organic matter, and pesticides are detected in the ecosystem's domestic water, surface water, and groundwater and are largely applied in pharmaceuticals and agriculture. Polymeric membranes are effectively remove the various pollutants in the water bodies, but fouling is one of the major limitations of commercial membranes. Herein, we modified the polymeric membrane surface with inorganic photocatalytic nanoparticles. In this work, the hydrothermal method is used for the synthesis of Bi2WO6 nanoparticles and as-synthesized nanoparticles grafted onto the various polymeric membranes, including polyetherimide (PEI), cellulose acetate (CA), polyvinylidene fluoride (PVDF), and polysulfone (PSF). The functional group studies confirmed the existence of nanoparticles and hydroxyl groups on the hybrid membrane. Further, finger-like voids, top-surface morphology, and roughness on the membrane surface were validated via Field Emission Scanning Electron Microscopy (FESEM) and Atomic force microscopy (AFM), respectively. The significant rejection of tetracycline, humic acid, and fulvic acid + atrazine was noted with the synthesized membranes in the following order: PVDF (81.1%, 78.8%, 80.6%) > CA (70.1%, 69.3%, 71.7%) > PSF (72.5%, 73.6%, 67.1%) > PEI (75.9%, 65.5%, 63.7%). The photodegradation efficiency of hybrid membranes against tetracycline, humic acid, and fulvic acid + atrazine was observed in the order: PEI (28.5%, 25.8%, 30.2%) < CA (46.5%, 42.4%, 40.5%) < PSF (46.9%, 37.7%, 44.7%) < PVDF (67.7%, 62.1%, 64.3%). These membranes exhibit an outstanding permeate flux recovery ratio to the neat membrane. Therefore, the grafting of Bi2WO6 nanoparticles creates a potential bonding with PVDF membranes than other polymeric membranes, thus exhibiting an outstanding rejection than hybrid and neat membranes.


Assuntos
Polímeros de Fluorcarboneto , Nanopartículas , Praguicidas , Polímeros , Polivinil , Sulfonas , Ultrafiltração/métodos , Águas Residuárias , Substâncias Húmicas , Antibacterianos , Polimerização , Ecossistema , Água , Tetraciclinas , Membranas Artificiais
2.
Int J Biol Macromol ; 256(Pt 1): 128255, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37984576

RESUMO

ß-glucans are soluble fibers found in cereal compounds, including barley, oats etc., as an active component. They are used as a dietary fiber to treat cholesterol, diabetes and cardiovascular diseases. These polysaccharides are important because they can provide many therapeutic benefits related to their biological activity in human like inhibiting tumour growth, anti-inflammatory action, etc. All these activities were usually attached to their molecular weight, structure and degree of branching. The present manuscript reviews the background of ß-glucan, its characterization techniques, the possible ways to extract ß-glucan and mainly focuses on membrane-based purification techniques. The ß-glucan separation methods using polymeric membranes, their operational characteristics, purification methods which may yield pure or crude ß-glucan and structural analysis methods were also discussed. Future direction in research and development related to ß-glucan recovery from cereal were also offered.


Assuntos
Hordeum , beta-Glucanas , Humanos , beta-Glucanas/farmacologia , beta-Glucanas/química , Grão Comestível/química , Fibras na Dieta/análise , Colesterol , Hordeum/química , Avena/química
3.
Chemosphere ; 311(Pt 2): 137016, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36374783

RESUMO

Herbicides such as atrazine and humus substances such as fulvic acid are widely used in agricultural sector. They can be traced in surface and groundwater around the agriculture field at concentrations beyond the approved limit due to their mobility and persistence. Bismuth-based photocatalysts activated by visible light are potential materials for removing various organic pollutants from water bodies. These photocatalysts can also be suitable candidates for developing a hybrid membrane with anti-fouling properties. In this study, Bi2WO6 nanoparticles were synthesized via the hydrothermal method and integrated into the cellulose acetate (CA), polyetherimide (PEI), polysulfone (PSF) and polyvinylidene fluoride (PVDF) polymers via physical blending approach. The hybrid membranes were then characterized by FTIR, XPS and FESEM to confirm the chemical bonding, chemical composition and surface morphology of Bi2WO6. Thus, the pure water flux of CA (35.6 L m-2 h-1), PEI (46.56 L m-2 h-1), PSF (6.84 L m-2 h-1), and PVDF (68.47 L m-2 h-1) hybrid membranes has significantly enhanced than the pristine CA, PEI, PSF and PVDF membranes. The significant rejection of atrazine-fulvic acid was observed with hybrid membranes in the order of CA (84.1%) > PVDF (72.7%) > PEI (47.8%) > PSF (37.2%), and these membranes have shown an excellent flux recovery ratio than pristine membranes. Further, electrochemical quantification studies were performed to analyze the removal efficiency of atrazine-fulvic acid from water. In this present work, GO-modified SPE was employed for electrochemical sensing studies. The resultant CA hybrid membrane achieved removal efficiency of 84.08% for atrazine. It was observed that the Bi2WO6 established strong bonding with CA, and PVDF membranes, thus showing a significant removal efficiency and FRR than other hybrid and pristine membranes.


Assuntos
Atrazina , Bismuto , Água , Membranas Artificiais
4.
Chemosphere ; 304: 135286, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35690168

RESUMO

Pirimicarb as a pesticide is used to control the aphids in the agriculture field; however, it affects the groundwater ecosystem by leaching through the soil profile. The post-synthetic amine and BWO modified MIL-100 (Fe) nanofillers were synthesized. The photocatalytic property of amine-functionalized and BWO@MIL-100(Fe) nanofillers was confirmed by the lesser bandgap energy than the unmodified MIL-100 (Fe) nanofiller. Herein, we constructed a nanofillers grafted PVDF membrane via in-situ polymerization technique for the pirimicarb reduction and photodegradation. Furthermore, the nanofiller's grafted membranes were characterized by FESEM, XRD, FTIR, and contact angle analysis. The carboxylic acid peak was observed on the FTIR which demonstrated the PAA grafted on the membrane surface and similar crystalline peaks evident that the nanofillers were grafted on the membrane surface. Furthermore, surface morphology studies have exhibited the dispersion of nanofillers and enhanced microvoids in the cross-section of the membrane. The decrease in the water contact angle of the membrane depicted the improved antifouling properties and surface energy. The nanofiller's grafted membranes have shown higher hydrophilicity correlated well with the enhanced pure water flux in the order M4 > M5 > M2 > M3 > M6 > M7 compared to the neat membrane (M1). In BWO@MIL-100(Fe) membrane has shown a higher permeate flux (25.99 L m-2.h-1) than the neat PVDF membrane. The BWO@MIL-100(Fe) grafted PVDF membrane has also shown excellent pirimicarb photodegradation of 81% at pH 5. The proposed MIL-100 (Fe) and bismuth tungsten nanocomposite will pave the way for the different MOF-based photocatalytic materials for membrane-based pesticide degradation.


Assuntos
Bismuto , Praguicidas , Aminas , Ecossistema , Polímeros de Fluorcarboneto , Fotólise , Polimerização , Polivinil , Compostos de Tungstênio , Água
5.
Environ Res ; 209: 112820, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35085563

RESUMO

Lignin valorization is essential in proposing an economic perspective as a raw material for valuable compounds. The bio-refineries require adequate processing to improve the high purity of lignin. Meanwhile, nanofiltration is fascinated attention to obtain high purity value-added products. The effect of alumina nanoparticles on the fabrication of mixed matrix membranes (MMM) has contributed to improvising filtration performance. However, incorporating nanoparticles is a significant issue regarding appropriate size and shape integrated into membrane for better filtration efficiency. The influence of shapes of alumina nanoparticles has been investigated into polysulfone (PSf) membranes for salt and lignin separation. The morphology of alumina was tailored with spindle, cubic, and spherical shapes synthesized at a different calcination temperature of 250, 500, 700 and 900 °C, respectively. The phase transitions were confirmed in X-ray diffraction (XRD) analysis, and the shape of the nanoparticles was observed in a high-resolution transmission electron microscope (HRTEM). The separation efficiency of membranes was tested with salt rejection using sodium sulfate, calcium chloride, potassium sulfate, and sodium chloride. The lignin was extracted from prehydrolysed sawdust, and the synthetic lignosulfonic acid sodium salt solution was separated. The higher lignin rejection of 98.6% and 97.9% were obtained for cubic shaped gamma phase alumina mixed matrix membrane. The high rejection of lignin occurred due to narrow pores channels that could resist the transfer of lignin through the membrane. The results proved that the controllable organization of PSf/alumina mixed matrix membranes could apply for lignocellulose compounds with good efficiency.


Assuntos
Óxido de Alumínio , Nanopartículas , Biomassa , Lignina , Membranas Artificiais , Polímeros , Cloreto de Sódio , Sulfonas
6.
Chemosphere ; 291(Pt 2): 132690, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34715105

RESUMO

Resource constraints and deteriorating environment have made it necessary to look for intensification of the industrial processes, to recover value from spent streams for reuse. The development of reverse osmosis has already established that water can be recovered from aqueous streams in a cost-effective and beneficial manner to the industries. With the development of several membrane processes and membrane materials, the possibility of recovering value from the effluents looks like a workable proposition. In this context, the potentialities of the different membrane processes in value recovery are presented. Among the pressure-driven processes, reverse osmosis can be used for the recovery of water as value. Nanofiltration has been used for the recovery of several dyes including crystal violet, congo red, methyl blue, etc., while ultrafiltration has been used in the fractionation of different solute species using membranes of different pore-size characteristics. Diffusion dialysis is found useful in the separation of acids from its salt solutions. Bipolar membrane electrodialysis has the potential to regenerate acid and base from salt solutions. Thermally driven membrane distillation can provide desalinated water, besides reducing the temperature of hot discharge streams. Passive membrane processes such as supported liquid membranes and membrane-assisted solvent extraction have been found useful in separating minor components from the wastewater streams. The details are discussed to drive home that membrane processes can be useful to achieve the objectives of value recovery, in a cost-effective manner through process intensification, as they are more compact and individual streams can be treated and value used seamlessly.


Assuntos
Águas Residuárias , Purificação da Água , Destilação , Filtração , Membranas Artificiais , Osmose , Diálise Renal
7.
Environ Res ; 204(Pt D): 112408, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34800534

RESUMO

Humic acid (HA) is the main component of natural organic matter that generates carcinogenic by‒products during disinfection and its removal from water resources is challenging. Biocompatible halloysite (HNTs) nanomaterial decorated with polyaniline (HNTs‒PANI) was synthesized via polymerization technique. HNTs‒PANI was added to prepare polyethersulfone mixed matrix membranes (MMMs). The influence of HNTs‒PANI concentration on HA removal efficiency was studied by varying the HNTs‒PANI (0.5, 1 and 1.5 wt%). The characterization studies of MMMs revealed that the addition of HNTs‒PANI improved the morphology of the membranes, surface properties, chemical stability and thermal property. The amine and hydroxyl groups within the MMMs improved the membrane wettability. The addition of HNTs‒PANI within the MMMs had significantly enhanced the pure water flux and HA filtration. YHP2 MMM with 1 wt% of HNTs‒PANI demonstrated sieving coefficient of 0.10 and the highest HA removal efficiency of 91% greater than the neat PES membrane. Furthermore, the antifouling property of the MMMs was studied using HA as foulant. 1 wt% of HNTs‒PANI added MMM showed a high flux recovery ratio (94.9%) with low total fouling of 12% and low irreversible fouling of 5%, respectively. Thus, HNTs‒PANI was an efficient nanomaterial for enhancing the pure water flux, removal efficiency and antifouling property to treat water contaminated with HA.


Assuntos
Nanoestruturas , Água , Compostos de Anilina , Carcinógenos , Argila , Desinfecção , Membranas Artificiais , Água/química
8.
J Hazard Mater ; 421: 126747, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34364210

RESUMO

The synthesis of Bi2WO6 and CeO2 photocatalytic nanomaterials exhibit a great ability to photodegrade the antibiotics and shown excellent oxidation of various organic pollutants. Heterostructure 1:1 & 2:1 Bi2WO6/CeO2 nanocomposite was successfully synthesized via the facile sono-dispersion method and exquisite photocatalytic activity. The 0.5 wt% of nanocomposites were well-grafted on PVDF membrane surface via an in-situ polymerization method using polyacrylic acid. The fourier transform infrared (FTIR) spectra demonstrated that the network formation in PVDF induced by the -COOH functional group in acrylic acid. The grafted membrane morphology and strong binding ability over the membranes were validated by scanning electron microscope with energy dispersion (SEM-EDS) and X-ray photoelectron spectroscopy (XPS), respectively. The permeate flux of 49.2 L.m-2 h-1 and 41.65 L.m-2 h were observed for tetracycline and the humic acid solution respectively for 1 wt% of PVP and 0.5 wt% of photocatalytic nanomaterials in PVDF membrane. The tetracycline and humic acid photodegradation rate of 82% and 78% and total resistance of 1.43 × 1010 m-1 and 1.64 × 1010 m-1, 83.5% and 77% flux recovery ratio were observed with N5 membrane. The 2:1 Bi2WO6/CeO2 nanocomposite grafted membrane showed a high permeate flux and better photodegradation ability of organic pollutants in the wastewater.


Assuntos
Substâncias Húmicas , Tetraciclina , Antibacterianos , Catálise , Polivinil
9.
Environ Res ; 204(Pt B): 112045, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34536369

RESUMO

A comprehensive overview of various modifications carried out on polymeric membranes for biomedical applications has been presented in this review paper. In particular, different methods of carrying out these modifications have been discussed. The uniqueness of the review lies in the sense that it discusses the surface modification techniques traversing the timeline from traditionally well-established technologies to emerging new techniques, thus giving an intuitive understanding of the evolution of surface modification techniques over time. A critical comparison of the advantages and pitfalls of commonly used traditional and emerging surface modification techniques have been discussed. The paper also highlights the tuning of specific properties of polymeric membranes that are critical for their increased applications in the biomedical industry specifically in drug delivery, along with current challenges faced and where the future potential of research in the field of surface modification of membranes.


Assuntos
Polímeros
10.
ACS Omega ; 6(31): 20279-20291, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34395976

RESUMO

Although zwitterion nanomaterials exhibit outstanding antifouling property, hemocompatibility, and antibacterial activity, their poor solubility in organic solvents limits their practical applications. In the present study, natural lysine (amino acids) was surface-grafted onto one-dimensional (1D) TiO2 nanofibers (NFs) through an epoxy ring opening in which the 3-glycidyloxypropyl (dimethoxy) methyl silane was used as a coupling agent. Chemical binding and morphological studies, such as Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy, were conducted to confirm the successful grafting of lysine onto the TiO2 NFs. The lysine-grafted TiO2 NF-polyethersulfone (PES) membrane induced electrostatic interactions and increased the surface charges from -28 to 16 mV in ζ-potential analysis. The lysine exhibited zwitterion characteristics owing to the presence of amino (cations) and carboxyl (anions) functional groups. Moreover, the modified TiO2-PES zwitterion membranes exhibited good water flux performances compared to the pristine membrane. ZT-4 membrane displayed the highest water fluxand bovine serum albumin (BSA) rejection of 137 ± 1.8 L m-2 h-1 and 94 ± 1%, respectively. The cell viability results revealed that the zwitterion PES membrane had excellent biocompatibility with peripheral blood mononuclear cells. The present work offers a convenient strategy to improve the hydrophilicity, antifouling property, and hemocompatibility of modified TiO2-PES zwitterion membranes for their biomedical and blood-contacting applications such as hemodialysis.

11.
Chemosphere ; 284: 131244, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34175516

RESUMO

The purification of hazardous textile dyeing wastewater has exhibited many challenges because it consists of a complex mixture, including dyestuff, additives, and salts. It is necessary to fabricate membranes with enhanced permeability, fouling resistance, stability, and superior dyes and salts removal from wastewater. Incorporating a highly water stable metal-organic framework (MOFs) into membranes would meet the requirements for the efficient purification of textile wastewater. In this study, nanofiltration (NF) membranes are fabricated by incorporating MIL-100 (Fe) into the chitosan (CS) through film casting technique. The effect of MIL-100 (Fe) loadings on chitosan characterized by FT-IR, XRD, contact angle measurement, FESEM-EDS, XPS, zeta potential, and surface roughness analysis. The membrane characterization confirmed the enhanced surface roughness, pore size, surface charge, and hydrophilicity. The CS/MIL-100 (Fe) membrane exhibited an improved pure water flux from 5 to 52 L/m2h as well as 99% rejection efficiency for cationic methylene blue (MB) and anionic methyl orange (MO). We obtained the rejection efficiency trend for the MB mixed salts in the order of MgSO4 (Mg2+ - 51.6%, SO42- - 52.5%) > Na2SO4 (Na+ - 26.3%, SO42- - 29.3%) > CaCl2 (Ca2+ - 21.4%, Cl- - 23.8%) > NaCl (Na+ - 16.8%, Cl- - 19.2%). In addition, the CS/MIL-100 (Fe) composite membrane showed excellent rejection efficiency and antifouling performances with high recycling stability. These stunning results evidenced that the CS/MIL-100 (Fe) nanofiltration membrane is a promising candidate for removing toxic pollutants in the textile dyeing wastewater.


Assuntos
Quitosana , Purificação da Água , Corantes , Membranas Artificiais , Cloreto de Sódio , Espectroscopia de Infravermelho com Transformada de Fourier , Têxteis
12.
Chemosphere ; 281: 130891, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34049085

RESUMO

Membrane-based separation is an area of extensive research in wastewater treatment, which includes the control of pollution and reuse of water. The fabrication and modification membranes for prevention and reduction of pollution to provide quality water with fouling-free membranes through the wastewater treatment are the progressive approaches in the industries. Several research works have been extensively working on modification and fabrication polymer membranes with integration of advanced oxidation process (AOP) to overcome the membrane fouling. This review describes the modification of membranes with various nanomaterials such as inorganic and modified carbon which can be used for pollution control and enhance the anti-fouling properties of ultrafiltration membranes. The effects on nanomaterials loading percentage, nanomaterials interaction with the polymers and rejection performances of the surface tuned membrane are elaborated. Secondly, the fouled membrane chemical cleaning process and NaOCl adverse effect on polymer structure are critically investigated. Moreover, state-of-art in the photocatalytic self-cleaning process are reviewed in this manuscript, and future perspectives on fouling mitigation based on AOP integrated membrane technology have also discussed.


Assuntos
Poluentes Ambientais , Nanoestruturas , Purificação da Água , Membranas Artificiais , Ultrafiltração
13.
Pharmaceutics ; 12(5)2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32369897

RESUMO

The delivery of drugs and bioactive molecules using pharmaceutical particulates and membranes are of great significance for various applications such as the treatment of secondary infections, cancer treatment, skin regeneration, orthopedic applications and others [...].

14.
Mater Sci Eng C Mater Biol Appl ; 94: 258-269, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30423707

RESUMO

Biofouling is a severe problem in membrane systems which hampers their broad applications because it requires regular chemical cleaning, reduces membrane life, and also decreases product quality. In this study, nanocurcumin (CCM) was prepared by sonication-assisted wet-milling technique and then incorporated in polyethersulfone (PES) membrane to enhance the anti-biofouling property. TEM analysis of the curcumin showed that nanomaterials are spherical. FTIR studies confirmed that the presence of CCM nanomaterial in PES membrane. Zone inhibition studies revealed that PES/CCM nanocomposite membranes exhibited the better anti-biofouling propensity against Escherichia coli and Pseudomonas aeruginosa. Static adhesion studies also showed that PES/CCM nanocomposite membranes prevented the attachment and proliferation of E. coli cells. Also, PES/2 wt% CCM nanocomposite membrane had a high thermal degradation temperature of 575.62 °C and tensile strength of 1.87 MPa. Moreover, addition of CCM nanomaterial in casting solution altered the membrane morphology and hydrophilicity. Further, pure water flux was increased up to 64.48 L·m-2·h-1 for PES/2 wt% CCM nanocomposite membrane. Filtration of raw sewage treatment plant effluent was also carried out. The incorporation of curcumin in membranes was effectively improved the antifouling tendency without compromised affecting the chemical oxygen demand reduction. This study highlights the anti-biofouling potential of CCM incorporated PES nanocomposite membranes, which could be utilized for various filtration applications.


Assuntos
Incrustação Biológica , Curcumina/farmacologia , Membranas Artificiais , Nanocompostos/química , Polímeros/química , Esgotos , Sulfonas/química , Eliminação de Resíduos Líquidos , Purificação da Água , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Filtração , Interações Hidrofóbicas e Hidrofílicas , Testes de Sensibilidade Microbiana , Nanocompostos/ultraestrutura , Pseudomonas aeruginosa/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Água
15.
Ecotoxicol Environ Saf ; 134(Pt 2): 287, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27772697
16.
Ecotoxicol Environ Saf ; 121: 1-2, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26096219
17.
Ecotoxicol Environ Saf ; 121: 186-92, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25869419

RESUMO

In this study, modified polyethersulfone (PES) and cellulose acetate (CA) membranes were used in the treatment of car wash effluent using ultrafiltration. Hydrophilic sulfonated poly ether ether ketone (SPEEK) and bentonite as nanoclay were used as additives for the PES and CA membrane modification. Performances of modified membranes were compared with commercial PES membrane with 10kDa molecular weight cut off (MWCO). The influencing parameters like stirrer speed (250-750rpm) and transmembrane pressure (100-600kPa) (TMP) were varied and their effects were studied as a function of flux. In the treatment of car wash effluent, a higher permeate flux of 52.3L/m(2)h was obtained for modified CA membrane at TMP of 400kPa and stirrer speed of 750rpm. In comparison with modified PES membrane and commercial PES membrane, modified CA membranes showed better performance in terms of flux and flux recovery ratio. The highest COD removal (60%) was obtained for modified CA membrane and a lowest COD removal (47%) was observed for commercial PES membrane. The modified membranes were better at removing COD, turbidity and maintained more stable flux than commercial PES membrane, suggesting they will provide better economic performance in car wash effluent reclamation.


Assuntos
Bentonita/química , Celulose/análogos & derivados , Conservação dos Recursos Naturais/métodos , Ecossistema , Membranas Artificiais , Polímeros/química , Sulfonas/química , Purificação da Água/métodos , Automóveis , Celulose/química , Interações Hidrofóbicas e Hidrofílicas , Peso Molecular , Ultrafiltração , Eliminação de Resíduos Líquidos/métodos
18.
Ecotoxicol Environ Saf ; 121: 174-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25890841

RESUMO

In this study, laundry wastewater filtration was studied using hydrophilic polyvinylpyrollidone (PVP) modified polyethersulfone (PES) ultrafiltration membranes. The performances of PES/PVP membranes were assessed using commercial PES membrane with 10kDa in ultrafiltration. Operating parameters The influence of transmembrane pressure (TMP) and stirring speed on laundry wastewater flux was investigated. A higher permeate flux of 55.2L/m(2)h was obtained for modified PES membrane with high concentration of PVP at TMP of 500kPa and 750rpm of stirring speed. The separation efficiencies of membranes were also studied with respect to chemical oxygen demand (COD), total dissolved solids (TDS), turbidity and conductivity. Results showed that PES membrane with 10% of PVP had higher permeate flux, flux recovery and less fouling when compared with other membranes. Higher COD and TDS rejection of 88% and 82% were also observed for modified membranes due to the improved surface property of membranes. This indicated that modified PES membranes are suitable for the treatment of surfactant, detergent and oil from laundry wastewater.


Assuntos
Membranas Artificiais , Polímeros/química , Povidona/química , Sulfonas/química , Águas Residuárias/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Análise da Demanda Biológica de Oxigênio , Ultrafiltração
19.
Ecotoxicol Environ Saf ; 121: 223-8, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25857244

RESUMO

In this study, xanthan gum (XA) was used as a hydrophilic biopolymer additive for the modification of polyethersulfone (PES) membrane to removal of humic acid (HA). The membranes are prepared using phase inversion technique and the concentration of XA was varied from 0.5 to 1.5wt%. The prepared membranes are characterized as a function of hydrophilicity, equilibrium water content (EWC), porosity studies and functional group analysis. Membrane surface and cross-sectional morphology was studied using scanning electron microscope. The lower contact angle value 64.2° was exhibited, when 1.5wt% of XA incorporated in PES membrane and this ensures that increase of hydrophilicity in pristine PES membrane. Further, higher water permeability (PWP) of 68.9(-9)m/skPa was observed for 1.5wt% of XA/PES membrane. The effect of pH on HA removal was studied for neat PES and XA/PES membranes. The rejection performance of XA incorporated in PES membranes were compared with commercial available PES membrane.


Assuntos
Substâncias Húmicas/análise , Membranas Artificiais , Polímeros/química , Polissacarídeos Bacterianos/química , Sulfonas/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Estudos Transversais , Água Doce/química , Interações Hidrofóbicas e Hidrofílicas , Microscopia Eletrônica de Varredura , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
20.
Ecotoxicol Environ Saf ; 121: 164-73, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25913699

RESUMO

Recently noted that the methylene blue cause severe central nervous system toxicity. It is essential to optimize the methylene blue from aqueous environment. In this study, a comparison of an optimization of methylene blue was investigated by using modified Ca(2+) and Zn(2+) bio-polymer hydrogel beads. A batch mode study was conducted using various parameters like time, dye concentration, bio-polymer dose, pH and process temperature. The isotherms, kinetics, diffusion and thermodynamic studies were performed for feasibility of the optimization process. Freundlich and Langmuir isotherm equations were used for the prediction of isotherm parameters and correlated with dimensionless separation factor (RL). Pseudo-first order and pseudo-second order Lagegren's kinetic equations were used for the correlation of kinetic parameters. Intraparticle diffusion model was employed for diffusion of the optimization process. The Fourier Transform Infrared Spectroscopy (FTIR) shows different absorbent peaks of Ca(2+) and Zn(2+) beads and the morphology of the bio-polymer material analyzed with Scanning Electron Microscope (SEM). The TG & DTA studies show that good thermal stability with less humidity without production of any non-degraded products.


Assuntos
Biopolímeros/química , Cálcio/química , Hidrogéis/química , Azul de Metileno/química , Poluentes Químicos da Água/química , Zinco/química , Adsorção , Difusão , Concentração de Íons de Hidrogênio , Cinética , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Temperatura , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...